Paraconsistent artificial neural networks and Alzheimer disease: a preliminary study
نویسندگان
چکیده
EEG visual analysis has proved useful in aiding AD diagnosis, being indicated in some clinical protocols. However, such analysis is subject to the inherent imprecision of equipment, patient movements, electric registers, and individual variability of physician visual analysis. Objectives To employ the Paraconsistent Artificial Neural Network to ascertain how to determine the degree of certainty of probable dementia diagnosis. Methods Ten EEG records from patients with probable Alzheimer disease and ten controls were obtained during the awake state at rest. An EEG background between 8 Hz and 12 Hz was considered the normal pattern for patients, allowing a variance of 0.5 Hz. Results The PANN was capable of accurately recognizing waves belonging to Alpha band with favorable evidence of 0.30 and contrary evidence of 0.19, while for waves not belonging to the Alpha pattern, an average favorable evidence of 0.19 and contrary evidence of 0.32 was obtained, indicating that PANN was efficient in recognizing Alpha waves in 80% of the cases evaluated in this study. Artificial Neural Networks - ANN - are well suited to tackle problems such as prediction and pattern recognition. The aim of this work was to recognize predetermined EEG patterns by using a new class of ANN, namely the Paraconsistent Artificial Neural Network - PANN, which is capable of handling uncertain, inconsistent and paracomplete information. An architecture is presented to serve as an auxiliary method in diagnosing Alzheimer disease. Conclusions We believe the results show PANN to be a promising tool to handle EEG analysis, bearing in mind two considerations: the growing interest of experts in visual analysis of EEG, and the ability of PANN to deal directly with imprecise, inconsistent, and paracomplete data, thereby providing a valuable quantitative analysis.
منابع مشابه
A preliminary study
EEG visual analysis has proved useful in aiding AD diagnosis, being indicated in some clinical protocols. However, such analysis is subject to the inherent imprecision of equipment, patient movements, electric registers, and individual variability of physician visual analysis. Objectives: To employ the Paraconsistent Artifi cial Neural Network to ascertain how to determine the degree of certain...
متن کاملImproved Application of Paraconsistent Artificial Neural Networks in Diagnosis of Alzheimer's Disease
Problem statement: The visual analysis of Electroencephalogram (EEG) activity has shown useful as a complementary tool in Alzheimer Disease (AD diagnosis) when the diagnosis remains uncertain, in addition to be used in some clinical protocols. However, this analysis is subject to the inherent equipment imprecision, biological artifact, electrical records, and subjective physician interpretation...
متن کاملMateria 03.indd
EEG visual analysis has proved useful in aiding AD diagnosis, being indicated in some clinical protocols. However, such analysis is subject to the inherent imprecision of equipment, patient movements, electric registers, and individual variability of physician visual analysis. Objectives: To employ the Paraconsistent Artifi cial Neural Network to ascertain how to determine the degree of certain...
متن کاملUncertainty Treatment Using Paraconsistent Logic - Introducing Paraconsistent Artificial Neural Networks
Give us 5 minutes and we will show you the best book to read today. This is it, the uncertainty treatment using paraconsistent logic introducing paraconsistent artificial neural netwo that will be your best choice for better reading book. Your five times will not spend wasted by reading this website. You can take the book as a source to make better concept. Referring the books that can be situa...
متن کاملUsing Methods Based on Neural Networks to Predict and Manage Diseases (A Case Study of Forecasting the Trend of Corona Disease)
Aim and background: Forecasting methods are used in various fields; one of the most important fields is the field of health systems. This study aimed to use the Artificial Neural Network (ANN) method in forecasting Corona patients in Iran. Method: The present study is descriptive and analytical of a comparative type that uses past information to predict the future, the time series of Corona in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 1 شماره
صفحات -
تاریخ انتشار 2007